Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 245: 116505, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718616

RESUMO

In this work, chitin nanowhiskers with high crystallinity index were obtained from shrimp shells waste using acid hydrolysis method and then comprehensively characterized. Subsequently, the impact of chitin nanowhisker content on processing and performance of acrylonitrile-butadiene rubber based nanocomposites was evaluated. The results showed that the addition of chitin nanowhiskers increased tensile strength and tear strength of nanocomposites by 116 % and 54 %, which was related to suitable dispersion of chitin nanowhiskers in matrix. Reinforcing effect of chitin nanowhiskers in acrylonitrile-butadiene rubber was also confirmed by Wolff activity coefficient, glass transition temperature and equilibrium swelling measurements. Moreover, it was found that higher content chitin nanowhiskers significantly improve the thermal stability of studied nanocomposites. The incorporation of chitin nanowhiskers resulted in increase of 74 °C for onset degradation temperature. This work confirmed that shrimp shell waste can be upcycled into chitin nanowhiskers - promising green filler in NBR for high-performance elastomeric applications.


Assuntos
Acrilonitrila/química , Exoesqueleto/química , Butadienos/química , Quitina/química , Nanocompostos/química , Penaeidae/química , Borracha/química , Animais , Elasticidade , Hidrólise , Resistência à Tração , Temperatura de Transição
2.
RSC Adv ; 8(43): 24261-24267, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35539178

RESUMO

Realization of the lithium-sulfur battery system is of major concern because a theoretical cell capacity of 1675 mA h g-1 can be obtained at an average voltage of 2.1 V. The primary issues that hinder the practical applications of this system include its poor utilization of sulfur, limited cycle life and retarded rate performance. In the present study, hemp-derived carbon (C-hemp) is made into a composite with room temperature-synthesized MnO2, which acts as a host for sulfur in the lithium-sulfur battery system. The composite material is characterized physico-chemically and electrochemically using various techniques. This composite exhibits better electrochemical performance as a sulfur carrier compared to pristine carbon. An initial specific capacity of 926 mA h g-1 is obtained at 0.1 C for C-hemp/MnO2-sulfur, which surpasses that of the C-hemp-sulfur sample. C-hemp provides a conductive matrix as well as porous sites for the accommodation of sulfur, while MnO2 exhibits the ability to absorb polysulfide chemically. Thus, this composite is established as a potential cathode for lithium-sulfur batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...